
	

© 2015 StackStorm

CASE STUDY

Large SaaS Provider Uses StackStorm for End-to-End CI/CD
Enables 12x growth in deploys per developer per day

SUMMARY

In September 2014 StackStorm software was trialed by a SaaS operator for automating
common responses to planned and unplanned changes to their operations environment,
including changes at the infrastructure, virtual and application layers.

StackStorm entered production in December 2014 in the area of highest immediate
need: the orchestration of an end-to-end continuous integration and continuous
deployment pipeline of a mission critical platform. Thanks in part to StackStorm, this
SaaS provider achieved a distinct competitive advantage in boosting their agility by
approximately 12x, as measured by the number of developer deploys into production per
day.

SaaS PROVIDER BACKGROUND

The SaaS provider has been a leader in first generation SaaS solutions, however, is
continually threatened by more agile competitors that can address customer
requirements more quickly. Additionally, the SaaS provider’s technical operations team
had identified considerable technical debt that was hampering its ability to innovate.

The SaaS provider set itself a goal of achieving a 10x, or greater, boost in agility by
starting over with a clean slate and creating a separate group running as a virtual
startup.

This group was comprised of eight operators with development experience, led by an
experienced enterprise operations architect. As a comparison, the existing application
was overseen by approximately 250 operators with a diverse set of skills and
experience.

The application run by the SaaS provider was more sensitive to operations than many
applications as it included real time collaboration components, such as video
conferencing. The application consisted of 28 components and grew ranging from

© 2015 StackStorm 2

authentication to media servers to the user interfaces and APIs; some of the
components ran on bare metal, some on KVM, some on vSphere, and some on Docker.
This level of complexity was even greater than that of the existing application for which
the SaaS operator is best known.

SaaS OPERATIONS ENVIRONMENT

The SaaS operator had already written wiring, tying together many aspects of its
operations, including its continuous integration and deployment. This wiring was
primarily comprised of Python scripts that had evolved as needed. The operator
estimated that it had invested seven years of development into this operational wiring.

KEY COMPONENTS

• Puppet
o Masterless Puppet was used in conjunction with Hiera

• ELK stack
• Sensu and other monitoring
• Application components
• YAML definitions of application requirements
• GitHub Enterprise

As the environment was put into product to deliver services to customers, several
challenges emerged, including:

1. Keeping the automation updated with a rapidly changing application
2. Managing the automations themselves, including troubleshooting

© 2015 StackStorm 3

3. Scaling the automation layer globally across multiple data centers
4. Achieving requirements of security conscious partners, including large banks and

telecommunications firms

The SaaS operator decided to focus its scarce resources on other matters and leverage
StackStorm for operational wiring.

STACKSTORM DEPLOYMENT

The first task for the SaaS operator was to have StackStorm ingest the existing Python
scripts into StackStorm. The Voodoo utility from StackStorm automatically added all the
scripts to StackStorm’s automation library and added relevant metadata to them. Once
ingested, the scripts were available via the StackStorm CLI, which made them easier to
manage and to operate thanks to help, parameter checking, logging and more. The
flexibility of adding the actions programmatically (via the Voodoo utility), also allowed the
SaaS operator to update their StackStorm action library automatically if any changes
were made to the existing Python scripts. This minimized divergence between the
currently deployed code base and StackStorm. Additionally, these scripts, now called
actions, could be combined into pipelines via StackStorm’s workflow engines and could
be triggered either directly by operators, or via rules triggered by StackStorm sensors, or
as a part of a broader workflow. The typically somewhat idiosyncratic scripts found new
life as reusable building blocks.

StackStorm was deployed to run within the environment in a way that enabled
StackStorm to both automate the CI/CD pipeline and itself fit into that pipeline.

© 2015 StackStorm 4

Deployment Details and Considerations

As background, StackStorm itself leverages source code repositories, such as GitHub, to
store all integrations and automations. This means that StackStorm complies with an
approach that treats infrastructure as code, and can be rebuilt and restarted in an
automated fashion.

The SaaS operator was using StackStorm to orchestrate an entire CI/CD process that
included the addition of new application components, as well as enhancements to the
existing components.

As new components were added, their specific deployment dependencies were recorded
in a database that acted as the SaaS operator’s “source of truth” for the environment.
StackStorm accessed this source of truth for each deployment; associated fields were
then passed as parameters to the automations executed by StackStorm. Certain
automations were associated with each component by being stored in their repositories.

StackStorm is built to scale horizontally, via the use of a message bus, so that each
component can be split into multiple workers run across different servers. As the
operator’s SaaS service scaled, this capability was critical in reducing downtime while
also increasing throughput of the automations.

Conclusion

StackStorm software helped this SaaS operator achieve significant boosts in agility,
while reducing the maintenance costs of their highly automated environment – all thanks
to a unique ability to model and automate entire pipelines while treating each automation
and integration as code that can be changed controlled.

